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OPTICAL POLISHING PITCH*

By Norman O. Brown
Lawernce Livermore Laboratory

ABSTRACT

This report describes the flow of pitch on
polishing laps, discusses the properties of pitch
that today appear important, presents some pitch data,
and describes pitch testing methods.

INTRODUCTION

Despite three centuries of use, there are
significant gaps in our knowledge of optical polish-
ing pitch, the primary medium for polishing in
precision optical work today. This report is an
effort to close one of those gaps apparently over-
looked to date, pitch flow.

In order to put this in perspective, it will
review previous work, discuss the properties of pitch,
how to measure them, how to control them, and further
speculate on their interactions with slurry. This
will at times require ranging far afield into discus-
sions of slurry, glasses etc., but since this is a
paper primarily intended for optical shop personnel
without access to technical libraries, an effort is
made to maintain completeness rather than to preserve
unities of composition.

The primary media for polishing are almost always
viscoelastic, such as pitch, asphalt, and poly-
urethane, with pitch predominating for precision
work. The reason is flow. Most opticians know that
at times a wax lap will give a better polish,
(although it is prone to orangepeel) and it will
hold its figure better, but they seldom use it. Wax
is predominantly plastic. A wax ball placed on a
table will flatten its base initially but will remain
a ball for years, while a pitch ball will deform
similarly when it is set down and continue till it
becomes a puddle.

This flow affects optical polishing on two levels,
macroscopic and microscopic, in control and in bite.
On the microscopic level, pitch flow seats the
particles of polishing agent. On the macroscopic,
pitch flows to mate with the glass, responding to
pressure changes. Opticians speak of hard and soft
pitches and hard and soft laps. They are not the
same. A paper thin lap ungrooved and backed with a
rigid mandrel is a hard lap, even with a soft pitch.
Such a lap will not effect a curvature change and
at the other extreme neither will a lap of jelly.
Since control or curvature changes can be obtained
between zero values of the extremes there must be an
optimum. To find these optima, to be able to scale
a process that works well in one case to another,
we must quantify our observations. This is the topic
of this report.

There must be a more explicit word of caution
here than in most reports since many who will read
this report are not overwhelmed with literature in
their field.

This report is intended to present a picture of
current understanding, incomplete and frequently held
together by little more than guesswork. An effort
has been made to make assumptions explicit, but the
possibility of hidden assumptions or phenomena over-
looked is always present. However, it has taken us
three hundred years to get here, and an industry
pressed to the limits cannot wait another three
hundred years for the bits and pieces to be welded
into a coherent whole. This type of information is
needed as early as possible to be integrated into
the real, practical research that is a continuing if
unrecognized part of the normal optician’s practice
and trade. The opinions offered are meant only as
possible guidelines.

To illustrate n~ meaning, consider the two
optima clearly pointed out herein. I can show that
for some processes there is definitely an optimum lap
compliance for obtaining a maximum rate of curvature
change, (i.e., control), and in several cases I think
I know where that optimum is. In no case, however,
do I know the shape of the response function, so I
don’t know how broad the optimum peak is (i.e., how
important these results are) nor do I know what effect
this has on processes not studied, or even whether the
optician wants to work at the optimum. The important
point is that we know how to calculate these compli-.
ances so the optician has a scaling rule to repeat
his results when parameters change.

Again consider Izumitani’s clear demonstration
(Ref. l) that there is a distinct optimum pitch
viscosity for maximum rates of glass removal. We do
not know whether this is also a function of polishing
compound properties, or indeed whether the surfaces
produced at these rates will be satisfactory for all
uses.. The important result is that we know there is
an optimum and can see if it works to our advantage.

Probably the majority of master opticians have
become masters by developing an amazingly intuitive
"feel" for these processes. Many already grasp these
phenomena in a quantitative way without being able
to express them in mathematical terms. Further, many
choose to depart from optima either for reasons of
a phenomenon not accounted for here, or for reasons
of personal preference and technique. The master
machinist does not always operate his lathe for the
fastest cut, or the deepest, or the smoothest. The
results contained here should be checked against
practice and if applicable, carefully and cautiously
added to working repertoires.

*Work performed under the auspices of the U.S. Energy Research & Development Administration, contract
No. W-7405-Eng-48.
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PREVIOUS WORK

Newton--Probably the original and certainly the
first reported use of wood pitch as a polishing medium
was that of Sir Isaac Newton (Ref. 2). It was cer-
tainly not in general use since he reconm~nded the
process to glass lensmakers thirty years later. To
polish the first reflectin~ telescope (using a near
relative of speculum metal) he pressed a half milli-
meter of pitch between two copper spherical mandrels,
relying on impressed slurry, (ground and elutriated
putty) to prevent adhesion to the upper mandrel. For
moisture he used his breath during manual polishing,
recommending light pressure and great patience.
Seldom have science and immediate practicality been
so happily married. The process was used virtually
unchanged from that time to this with no reported
research until the simultaneous work of Preston and
Twyman in early 1920’s.

Preston-.-In 1922, F. W. Preston published a
paper (Ref. 3) on the properties of pitch as 
mounting or blocking medium. He showed that the
viscosity should lie in a certain range, too high
a viscosity preventing strain relaxation of thermal
distortions and too low providing inadequate support.
He provides an excellent discussion of pellet block-
ing and of pitch testing. He disparages pointed needle
testing as unreliable, preferring truncated cones to
these, and not only provides the first reference to
a ball test but actually gives the proper form of the
equation. He measured his viscosities at 15°C, but
it is not clear at what temperature he used them
unfortunately. The viscosity range of pitches be
recommended lay between 5 x lO~ poise and 2 x lO~

poise at 15°C. The latter were determined by back-
tracking from a description of his tests. These
appear somewhat high by modern practice, but as
mentioned it is not clear at what temperature these
were actually worked. Preston refers to wood ash
additions to pitch at weight ratios of 1:8, surmising
that the particles are separted by thin pitch films,
the pitch providing flow relaxation and the wood ash
coupling in such a way that its elasticity dominates.

Twyman--During the period Preston was working
on pitch at Taylor, Taylor and liobson, F. Twyman was
apparently working on pitch at Hilger Watts (Ref. 4).
He likewise recognized that viscosity was the dominant
p~sical property and promulgated the Twyman penetro-
meter test, the predominant pitch test in most shops
today. (This is the penetration in millimeters at
70°F of a 14 millimeter cone truncated to I/2 milli-
meter, under a l kg load, in five minutes.) He
observed and measured the exponential dependence of
pitch viscosity with temperature and recommended two
pitches, I-I/2 nm~ and 3 n~ penetrations. He gave
several formulae, recommending the addition of one
part rosin to eight or ten parts of pitch and from
one half to one part of beeswax. He recommended softer
pitches with softer materials (e.g., 4 mm p!tch with
Iceland spar) and observed that wax laps ~ere less
prone to sleek but had little tendency to flow. He
reconmmnded wax laps composed of two parts rosin 3-
I/2 parts of beeswax of some applications. For
higher pressure work he recommended stiffening the
pitch mixtures above with an additional six parts
of willow wood flour (in the same ballpark as Preston’s
wood ash).

Wada and Hirose (Ref. 5) studied wood pitch and
other bituminous materials in torsional creep tests
in 1961, and found no significant elastic compliance.

Vinokurov, et al, (Ref. 6) reported that with
BF6 glass there was no significant difference in the
height of micro irregularities with pitch viscosities
ranging from I0 ? to lOt~ They reported wax laps
produced irregularities I/2 to I/3 those found with
pitch laps. The following data were reported for IOB

poise pitch for irregularities.

Particle Size

Glass Type_ <l~m ]-3 ~m .3-5 ~m

BK] 0 226 310 460
TFI 289 333 497 A

They also observed that the scratches are most pro-
nounced where polishing compound first contacts the
glass.

In a 1971 Hoya report (Ref. l), Izumitani
pointed out the difference between pressing and fitt-
ing functions. Using rubber surfaced laps of increas-
ing elasticity, he showed increasing polishing rates
(and rougher surfaces with stiffer laps. With pitch
and various pitch, pitch-felt, and pitch-rosin mixtures
he showed that there is a definite optimum in polisi~ing
rate occurring near (2 x lO~) poise for SF6 (soft glass)
and near (7.5 x lO9) poise for BK7. The maxima were
rather sharp and a factor of two greater than rates
achieved at viscosities an order of magnitude different
on either side. Electron micrographs showed that with
SF6 glass the less viscous pitches produced finer
surfaces.

PITCH PROPERTIES

The dominant property of wood, coal tar, and
petroleum based pitches used in optical polishing is
their viscosity. This dominates the flow on laps on
the macroscopic level and the interaction with the
polishing compound particles on the microscopic level.

The property data tabulated in Appendic D shows
that viscosities of pitches in common use range over
five orders of magnitude, and that these have a strong
temperature dependence varying from e-’4T for wood
pitches to e-’~T for petroleum based pitches. Pitch
viscosity changes by a factor of two every 1.6 to 2
degrees centigrade for wood pitches and every three
degrees centigrade for petroleum pitches (Figure l).

No implication as to preference is intended in
showing only the Gugolz and Cycad pitches in Figure I.
I simply selected two families representing wood and
petroleum based pitches. Two batches of Gugolz 82
obtained several years apart are represented as
indicated by the triangle orientations. The range
of viscosities does not imply that these are all in
use at the same temperature. These are intended for
mixing as well as for use over an extended temperature
range. However several orders of magnitude of different
viscosities are certainly used and it is interesting
to note that this range is just that which corresponds
to the range .of geometric compliance effects we shall
find later.
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Evtdence is accumulating that there is an optlmum
viscosity for each glass, but there is insufficient
data at present to determine whether this is primarily
a function of the glass alone or whether it is also
a function of the polishing compound and lap geometry
as well. These topics are currently under investi-
gation. They will be discussed in the section on
pitch slurry interactions. If is only important to
recognize at this point that material removal rates
can be e~hanced by a factor of two by selection of
the proper viscosity, and that this property also
enters in a strong way into the lap compliance function
(figure control) in a manner also to be discussed.

1012

1011

10Io

10g

10e

r

20 30 40 50
Temperature, °C

Figure I: Viscosity as a function of temperature
for Gugolz (wood) and Cycad (petroleum)
pitches. (Determined by cylinder test.)

Pitch is usually classed as a viscoelastic medium
by the rheologists who study such materlals (poly-
urethane is also viscoelastic). This implies that
the elastic behavior should be accounted for (Young’s
modulus) in studies of lap behavior. In Ig61, Wada
and Hirose looked for elastic compliance .in wood
pitches and could find no significant effects, con-
cluding that the molecules were too small to form an
elastic network. Using more sophisticated equipment
and techniques that have become available in the
meantime we have found such effects and found them
small indeed.

Acoustically determined values of Young’s modulus
are usually near 2.5 x lO9 pascal (3.6 x 105 psi).

These and other elastic properties are also tabulated
in Appendix D.

Elasticity turns out to be very difficult to
measure because of the degree to which it is over-
shadowed by viscous flow. Even acoustic measure-
ments turn out to be quite difficult becuase the
viscosity tends to dampen and broaden signals and
this is complicated by the fact that pitch has an
absolutely wild combination of stickiness and
brittleness. Experimental students of the subject
preparing to use sophisticated equipment should be
forwarned that the results tend to perturb rheologists.

There is always a question on the applicability
of acoustically measured Young’s moduli to slower
frequency processes, so we rigged up an oscillating
load with a deflection measuring device capable of
measuring to microinches. Loading 1.5 cm thick pitch
cut into 4 cm square facets with grooves 6 mm deep
with an oscillating load varying from near zero to
two pounds per square inch at three cycles per minute
showed sinusoidal elastic response ranging from one
to two microinches, a tenth to a twentieth of a wave
in the visible. Since this corresponds to a 50 pound
load on a six inch workplace, we concluded that
elasticity effects are probably negligible in normal
polishing, when we are considering figuring or the
"fitting" function as described by Izumitani (Ref. l).
However, elasticity does have an important effect on
surface quality as was clearly demonstrated in the
same report where various rubbers, felts, plastics,
etc. were studied. This may have an influence on pitch
backing selection, and possibly on pitch thickness
selection since the range of elasticities we are
concerned with is small. Although short time
elastic strains are small, they are a function of
both pressure and pitch thickness and since they are
on the order of the scoring depth of the particle
against the glass, they may possibly have a pronounced
effect on the bite against the glass (e.g., chatter,
slip, etc.

Viscosity on the other hand has a strong effect
on figure. Twymen first studied the temperature
effects on viscosity finding them to be pronounced
to say the least. He correctly assessed the temperature
dependence as exponential presenting his data in terms
of mobility (reciprocal poise, i.e., I/~), in terms
of a doubling rate:

Mobility = M =1= Mo X 2a(T-TO)

In1= Inl~+ a(T - o) I n2
/~ /~o

Inp = In/Jo - (a In 2) (T o)
= In/~o - K(T’- To)

/~ =/~0 e-K(I"-To)

where K = a In 2.

In this way, Twymans constants for hard and soft pitch
transform to (-In 2/I.65 = -0.420) and (-In 2/I.9g 
-0.348) respectively, bracketing our own data very
well. See Appendix D.
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We have investigated the mixing of pitches and
find that mobiltties rather than viscosities add
proportionately, so for the same pitch families we
can write for a mixture:

P’m|x a + b

where a+b are the weights of pitch type a and type b
respectively, and p are their respective viscosities.

Note that we restrict this relationship to
mixtures of the same family. We cannot state that
this holds for mixtures of wood and petroleum pitches
for example, and it certainly does not hold for
additions of waxes and other non viscous materials.
Note also that since mobilities add proportionately,
the lower viscosity or softer pitch will tend to
dominate the mixture.

If we replace the viscosities in the above
formula by their reciprocals, the mobilitles (i.e.,
t4m = I/P(a+b) and let Ma represent the lower viscosity
material, one part of which is to be added to a
material of higher viscosity having Mb represented by

b parts to obtain a desired intermediate mobility Mm
we can write the above as

let a = 1

(1 + b) 1 b=

/~a

(Mb - Mini~)b=
(Mrnix - e}

In our investigations we found that pure pitches
or mixtures of pure pitches behave as a nearly pure
viscous fluid being strain independent for short times.
There is a long time elastic recovery of considerable
proportions in terms of optical wavelengths. I have
noted that a meniscus several millimeters high,
produced against a tape dam, pressed out completely
in a short time but when left free standing over a
weekend reappeared sufficiently to be easily visible.
The inference with regards to laps left unpressed
overnight is obvious.

The short time strain independence of both
pitches and pitch mixtures of the same family was
found to be temperature cycle independent also.
Tests run in a Searles type cylinder tester gave the
same results whether sheared for a short time or a
long time, and completely independent of the temper-
ature cycle sequence. Thus we could test a pitch
at three or four temperatures and get the same results
for T2 whether we tested at a lower temperature Tz
first and then at a higher ten~perature T3 second,
and then at T2 or if we tested at Tz first and then
went directly to T2.

We are publishing no data on wax additions at
this time except for this note that small additions
of wax (l to 5%) have a strong effect that is definitely
strain dependent and at least exponential with strain.
Initially, the pitch wax mixture behaves with a viscosity
similar to that of the pitch above. As the pitch flows,
its viscosity continuously decreases. The wax molecules
are long and can perhaps be viewed as an entangled mass
of spaghetti which in shear flow either gradually alion
with the shearing planes or breakup. Small amounts
initially have little effect on macroscopic flow, but
as time and shear strain increase, these tend either to
lubricate the mixture or to interfere somehow with the
self adhesion of the pitch. This raises the rather
exciting possibility that a wax proportion could be
found that would compensate for geometric variations
in compliance of laps where a single pour is used for
months at a time, gradually decreasing in thickness.

However, while macroscopic effects are initially
negligible, microscopic effects are appreciable. From
the very beginning a slight wax addition to a pitch
reduces the indentation hardness. The thumbnail test
quickly shows the pitch is different. This has unknown
implications for pitch slurry interactions where particle
indentation or socketing is important.

PITCH PREPARATION

Before leaving the topic of pitch mistures we
must discuss the melting and pouring of a pitch. All
pitch is a mixture of components, the lighter contribut-
ing strongly to lowering the viscosity and being more
readily vaporized. In addition to being chemically
distinct, these components are chemically and thermally
reactive.

During heating the more volatile components rise
to the surface and are driven off, increasing the
viscosity of the mix. In addition, chemical reactions
take place. Particularly i~portant are oxidation reac-
tions, the intake of oxygen being of the same order
as that of the fractions evaporated (Ref. 3). These
reactions take place fairly rapidly at temperatures
above lO0°C and are very pronounced at temperatures of
140°C-150oC. These effects presumably occur at a
lower rate at lower temperatures so prolonged heating
should be minimized. The effects can be reduced by
using small deep pots for pitch kept molten during
the d~ (since this minimizes surface area), and 
keeping this pot lightly covered (lightly to prevent
an explosive rupture) since this will saturate the
atmosphere immediately above with volatiles retarding
both evaporation and oxidation.

There will however be segregation in such pots
and the mixture should be stirred slightly just
before pouring. On large laps, I have seen gross
segregation where mixing did not intnediately preceed
pouring. The mixing should be gentle and at a fluidity
that permits air, entrapped as bubbles by the mixing,
to rise uniformly. I have seen gross density variations
on laps due to d~ep patches of foam.

This segregation in the pots also occurs in
large cans where cooling is slow after a pour. The
pitch at the top of a five gallon drum tends to be
softer than that at the bottom and this is even more
the case in a barrel. I find it hard to believe that



-5-

there can be much flow in a barrel of hard pitch,
preferring to believe this occurs during cooldown,
but I have several times heard ’from master opticians
in different shops that Lhe process continues slowly
even in cold barrels, so some shops periodically
turn their stock containers. However, the possibility
of viscosity variations not only with respect to
source and batch processing but even with respect to
the same barrel and the same cooker is such that
periodic testing in the shop by the methods discussed
in Appendix A appears warranted.

PITCH FLOW: Macroscopic Behavior

The macroscopic flow characteristic of a viscous
lap we will term compliance, defining this as rate
of change in thickness of the lap in response to a
unit of pressure.

We have mentioned that a paper-thin, ungrooved,
rigidly backed pitch lap is a hard lap regardless of
the softness of pitch. Similarly the ridiculously
exaggerated grooves of the high compliance lap cross
section shown in Figure 2 would make it a soft lap
regardless of the hardness of the pitch. Even a
little pressure will make the pitch flow laterally
into the grooves. Even a slight flow here along the
large groove face a~ea will produce such a large
volume change that to preserve the facet volu~e t~e
surface must drop significantly in terms of optical
tolerances. Since laps at the extremes of hardness
and softness (i.e., diamond and jelly) cannot effect
curvature changes, this property which we term control
must have an optimum if we could find it, and once
found we need a descriptive formula to find it again
for other cases.

We will find it to be a function of both geometry
and viscosity and we need the relationship to compen-
sate for a change in one by a change in the other.
Geometry after all will be affected by the size and
character of the work, and the pitch properties will
be selected for the material to be worked.

Low compl|ance Compliance: How fast a
pitch facet
compresses

v v due to an
increment

Moderate compliance of pressure

Very high compliance Compliance,---

Flgure 2 : Cross sections (exaggerated) of laps 
various compliances. The control-compli-
ance curve simply indicates a guess at its
features, zero extremes and at least one
optimum.

While pitch is obviously a very complex nedium,
it appears that its flow is predominantly Newtonian

(i.e., that of a very viscous fluid). This implies
a relatively sidle model, but its behavior is far
from simple in detail. My rather naive early experi-
ments quickly showed the phenomena were of a complexity
that required analytical rather than experimental
unraveling. This has been a~ly verified by the sub-
sequent analysis. As a result, this section will be
more mathematical in tone than the other sections of
this paper, but the bulk of the mathematics will be
reserved to an appendix to preserve readability.

Since most opticians are unfamiliar with hydro-
dynamics, I should briefly describe a Newtonian fluid.
This is one in which a constant shear stress results
only in a linear velocity change in the direction
normal to the area over which the shearing force acts.

Figure 3: Newtonian flow.

It two plates of area A are coupled to an adhering
Newtonian fluid and subjected to a force couple as
shown in Figure 3, one plate will move with respect
to the other at steady state with a velocity v in the
direction of the force F such that there is no change
in the separation y. We can define a shear stress T
in terms of the fluid viscosity p such that here

F .~vz = ~ = y

In this simple case, the fluid can be vlewed as an
assembly of infinitesimal plates parallel to the
surface plates sliding over each other with linearly
increasing velocity as the plates progress from the
lower reference surface to the upper surface.

Immediately, the statement that pitch acts
primarily as an incompressible Newtonian fluid dispels
one common misconception of pitch flow.

Pitch facets are shaped by separating grooves.
A shearing force acting on the surface of the pitch
will distort the groove shape but leave the groove
volu~ unchanged, since the groove width will not be
affected by pure shear of this type. Since the groove
volume remains the same, that of the facets does also,
so there can be no thickness change due to this shear.

We are concerned rather with the flow leading to
height changes of the facets and consequently to figure
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Figure 4: Surface shear induced distortion leaves
the groove width unchanged.

changes. These may be mathematically uncoupled,
studied separately, and then combined, although
the recombination need not be studied to understand
the phenomenon. We are interested in how pitch flows
vertically.

P P

Figure 5: Mathematical coupling of pressure induce
shearing and surface shearing.

The pitch flows from the top surface into the
grooves rather than being abraided away, although a
slight amount of abrasion undoubtedly takes place
uniformly over the surface.

The next step in the development of our model is
to look at a one dimensional case, a strip W wide and
H thick. To study this we will place two strips on
top of each other and press them together. This
simulates the case on the lap where the pitch adheres
to the backing plates but is free to flow la.terally
on the upper surface which is said to be free of trac-
tions. The model simulates this very well since by
symmetry the imaginary platelets on either side of
the central horizontal dividing line are moving
together producing no horizontal shear with respect
to each other across this line. For exact modeling
we will assume the pitch is very thin in comparison
to its width, much thinner than shown in the diagram,
so thin in fact that the pressure across the pitch
can be assumed to be a constant across the thickness
at any point although it will vary slightly from point
to point across the width. From symmetry we need only
examine half the width. The pressure distribution is
plotted across the median on a vertical scale. Between
a~ two points such as xl and x2 there will be a slight
pressure difference AP.

X1
X2

Figure 6: Strip flow model.

For a unit length of this strip, the shearing force
at any point of height y, will be

F = AP x I x (H-Y) = AP x Area

For equispaced points A, B, C etc., the shearing
force at C will obviously be twice that at B, at D
three times that at B, at E four times etc. This
will yield a constant change in the slope of the
velocity distribution with each increment of height.
Note that this is a change in the slope of the velocity
distribution, not just a change in the velocity. Such
a distribution is parabolic.

Next consider the velocity at point x. The
average amount of material flowing horizontally past
point x in time interval At will be the thickness
decrement AH occurring in that time increment times
the distance from the centerline to point x. At x2
there will be twice the material flowing past at xz,
at x3 three times the material flowing past at xl etc.
By a similar analysis this leads to a parabolic pres-
sure distribution. The mathematical details are pro-
vided in Appendix C. Letting B represent the rate of
thickness change per unit time this leads to a pres-
sure distribution

o

~H~(W/2)2-x2]
P(x) = H3

The oEtician is only interested in the average pres-
sure P which for a strip turns out to be 2/3 the
maximum pressure (i.e., at x = O) so we can write,

There is a second effectively one dimensional
case that can be analyzed, the circular plate. By a
similar analysis also contained in the appendix, the
pressure distribution becomes

o

P(R) = ~H(R~’R2)

~ = 32 FH3
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The constants are slightly different from minor
differences in integration and averaging. A quick
dimensional check shows

Strip

__ : Cstrip
P(x)=~-~

-x 2 ; ~ P

Circle

-- -- : circleP(r)=~
-x= ; H ~"

Thus we see that we have the proper form of the
equation and the equation for any facet shape can
differ only by a constant or by some function of
dimensionless ratios.

These results.are extremely interesting, showing
that these simple cases have a temporal dependence of
height varying as the thickness cubed and the facet
size squared, strong functions indeed. Further, the
viscosity function while shown as linear must be taken
in the context of a temperature exponential.

Figure 7: Facet shapes commonly found on pitch laps.

Now these simple cases are a far cry from the
number of cases of interest. Facet shapes commonly
found on laps hand cut, are usually squares and
equilateral triangles. To avoid some of the effects
of four-fold syn~letry leading to astigmatism, some
people further cross cut squ~res across the diagonals
leading to 45-90 triangles, and molded hexagon press-
ing mats are also frequently used. Diamond shapes are
used in special applications, and for cylindrical work
and astigmatism removal varlous degrees of rectangles

are used. The problem to be next attacked is the
transfer from the two simple cases above, to the
shapes con~only encountered, still keeping in mind
that as yet we are working only with very thin laps
grooved all the way through to the backing plate.

Those familiar with heat transfer will immediately
note a similarity between the heat flow equations for
uniform internal heat generation (i.e., resistance
heating, nuclear power generation etc.) and the pres-
sure distribution formulae above

Lap Pressure Internal Heating

Strip Slab

-x,1 _x,]
Circle Cylinder

P(r) =-~ ~-~ ; T(r) = ~-~ [\-~-)

By analogy, temperature corresponds to pressure.
The heat generated per unit volume corresponds to the
increment of incompressible pitch pressed into each
volume increment by the squeezing plates, and the
reciprocal of the viscosity (i.e., the mobility corre-
sponds to the thermal conductivity. Thus by simply
equating

H3 H

we can utilize the heat transfer literature and
computer programs that are readily available to obtain
the constants C and F/Po to obtain solutions to our
class of equations which are of the form

"H=c
FH

These are tabulated in Table 2. Plots of isobars for
the shape are given in Appendix C together with an
analytical solution for squares, rectangles and
equilateral triangles. The latter are especially
valuable to computer users who require check cases
for mesh sizes etc. Here Z = (C P/Po)shape ÷
(C F/Po)strip.

Thus far we have been restricting ourselves to
very thin pitch cut all the way through to the plate.
To look at more reasonable thicknesses again cut all
the way through to the plate we need the computer.
For those interested in pursuing computer studies on
the subject I should point out that going from known
displacements backward to pressure distributions is
considerably more difficult than proceeding from
known pressure distributions to displacements. It
is similar to the difference between differentiation
and integration. As a result we have so far only
computer solutions for the two one dimensional cases
treated thus far, the strip and the circle, but as
we shall see, these are probably sufficient. He shall
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Table 2

(C PIPe) shapeShape C PIPe Z = (-(:,-p/-~pcTst--~i~- Dimension (We]

450-90= triangle 25.60 0.441 4.234 Short leg
60° triangle 26.74 0.449 4.602 Leg
60=-i20° diamond 12.30 0.465 2.154 Leg
Hexagon 13.30 0.492 2.470 Diagonal
Circle 10.67 0.500 2.000 Diameter
Square 9.498 0,476 1.695 Side
"~:1 rectangle 7.094 0.483 1.285 Short side
2:1 rectangle 5.838 0.601 1,007 Short side
2"~..:1 rectangle 5.153 0.630 1.024 Short side
4:1 4,752 0,663 1.003 Short side
Strip 4.0 0.667 1.000 Width

expect to see conslderable difference between the
results calculated by our slmple formula when the
thickness is appreciable wlth respect to the width
or diameter and steadlly decreasing as the thickness
decreases. The reason is that in the case of a thin
pitch the material which is as it were infused into
the spreading layer has a chance to become spread
throughout the layer (a hidden assumption in our
analysis) before it has traveled very far in propor-
tlon to the width. In a thick layer the "infused"
material does not get so well distributed In produc-
Ing velocity effects. In Table 3 we tabulate a
measure of this which will be Pc/Pf (the ratio of the
mean pressure from the computer divided by the simple
formula value). In addition, we will tabulate
(Fc/~fc-l) in percent. This is the error in percent
of the corrected formula as described in the next
few paragraphs with respect to the computer deter-
mlned mean pressure. The independent variable
is the ratio of the strip width or diameter to the
pitch thickness. Again remember, we are still work-
ing with pitch cut all the way through to the plate
and actually cut with a verticle cut, not a tapered
V. Analysis llke everything else has to proceed from
a walk to a run. These data are plotted in Figure 8.

Table 3

Fc/Yf Strip. 5.292 2.019 1.223 1.040 1.010 1.002

(~-cl~f-I)% -.gO -.68 -1.5 -.94 -.19 -.04

9.640 3,113 1.439 1.102 1.017 1.007 1.0007

"-.42 1.6 .50 -.61 -.6l .19 -.01

The first point to note is that the computer
(which can be believed in this case) always provides

Iressures higher than the simple formula predicts
i.e., lower compliance), especially so in the case

of small width to thickness ratios. The pitch flow
is taking place much closer to the surface partic-
ularly in the center region of the circle, instead
of distributed across the full thickness everywhere.
As a result in a 2:1 diameter to thickness ratio the
simple formula predicts a pressure almost an order
of magnitude low. In the normal range of facet sizes,
8:1 to 2:1 the error ranges from 50 percent to I000%.

10
9
8
7
6
5
4
3
2
1
o

-1
-2

Z~ltc/~-f : circles
\ EI ~’c/gf: strip

10 100
Width thickness

Figure 8: Relationship of detailed computer run
values to simple ~ormula values, and
the error resulting from the modified
formula. Note that the error is magnified
by lO0 times.

In trying to brinj~ order out of confusion I
noted that plotting l-Pc/Ff against WIH on log-log
paper yielded an almost straight line with a slope
near -2. The function of dimensionless ratios was
almost certainly a series and the coefficients should
be near whole numbers. Without going into details the
first three series terms heuristically pulled out
turned out to be

1+ 20

for the strip and

for the circle. The exponent 1.6 is probably an
approximation term for the remainder of the series,
but the computer results were obtained with a mesh
size consistent only with four digit accuracy so
further reduction was not warranted. The error obtained
by multiplying the (W/H)2 factor in the simplest formu-
la by this additional factor which we shall call Fz
(W/H) is shown in Table 3 and Figure 8 showing it has
some validity. The exact factor of two difference in
the two series coefficients is just too much to be
fortuitous. At first I believed it was the Z factor
listed in Table 2, but on examining the pressure
variations in the vicinity of the edge (see Appendix
C figures) ! have come to the conclusion that this is
due to a factor we shall term Z defined as

(edge area/facet surface area)shape
Z = ’(dd~e’ area/facet surface area)strip

Thus the’coefflcients in Fz(N/H) above become 20Z
and 2Z, where Z = l for the strip and Z = 2 for the
circle.



From our analysis thus far it should be clear
that each of these ratios can be translated into an
orifice ~rea (edge length x groove depth) to floG~
volume (B x facet surface area) ratio. Conlparing the
circle of diameter W and strip of width W we obtain an
exact factor of two thusly

(xWh)l(~W2/4) 4hlW
Zcircle [] (2Lh)I(WL) = 

At this point we certainly have an equation
that predicts compliances for full vertical cut strip
and circle facets to a very close approximation, and
we can probably extend this to any of the other shapes
as well simply by using the appropriate Z factor defined
above in Fz(W/H).

Now we must look at the case of grooves only
partially cut through. Tables 4 and 5 tabulate for
strips and circles respectively GS and GC which are
the dimensionless compliances we shall define as

0

G : ~_~H
FH

In these tables each number is followed by the expo-
nent of ten by which the number must be multiplied
(i.e., 1.855-I = 1.855xI0-z.

Plotting the data of Table 4 on log-log scales
in Figures 9 and lO reveals that the groove depth to
thickness ratio effect is quadratic as shown by the way
the points align with the heavy dashed line drawn with
a slope of two.

However, when we simply modify the formula we
already have by a factor (D/H)2 we find the errors
plotted in Figures lIA and liB. The function required
will not be a simple one as shown by the way the errors,
decrease in both figures as (W/H) varies from two 
eight and then begin to increase again. Furthermore,
the fact that D and H are identical for the full depth
vertical cut case leads us to question which if any
of the W/H factors there should really be written
as W/D.

Since the function Fz appeared to be a measure of
flow distribution through the thickness, ! decided to
leave the ratios as W/H in the series, and faced with a
limited time budget I finally brute forced the vertical
cut groove case into

D~. W

where C is the value from Table 2 and

B-- (0.35+0.09Z)
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WIHo2
GS
ES
GC
EC

W/II - 4

E$
GC
EC

WIH- 8
GS
ES
GC
EC

W/H- 16
GS
ES

Table 4

1. O0 O. 80 O. 60 9.4.~0 O. 20 O. 1.____~0O. OS

1,855-1
-.96
2.766-1
.42

1.448-I 9.690-2 5.079-2 1.421-2 3.614-3 8.276-4
-,28 -.85 ,61 1,9 1.2 -2,5
2.158-11.511-18,554-2 2.677-2 7,082-3 1.749-3
-.65 .23 4.0 6,23 -.87 -1]/6

1.239-1 9,416,.2 5.931-2 2.839-2 7,283-3 1.788-3 4.186-4
.69 1.7 -1.0 -3.4 -3.6 -1.8 -3.1

2.141-1 1.635-1 1.060-1 5.313-2 1,439-2 3.557-3 8.361-4
-1.6 1.7 3.0 4.2 4,3 ,35 -7.6

5.112-2 4,158-2 2.775-2 1.374-2 3.545-3 8.489-4 1.885-4
1.5 4.2 2.0 -.79 .28 3.9 2.4
1.119-1 8.826-25.718-22.778-2 7.163-31.700-3 3.769-4
-.49 2.5 .97 -1.3 -1,3 -2.2 -7.8

1.502-2
1.4
3. 781-2.62

1.331-2 1.009-2 5.727-3 1.612-3 3.762-4 7.692-5
2.6 .16 -3.7 -3.7 -1.4 -6.5
3.239-22.326-21.237-2 3.313-3 7,570-4 1.535-42.9 1.3 -1.1 .42 1.2 -6.0

W/H* - 32 See Text!!!
GC 1.024-2 9.390-3 7.593-3 4.697-3 1.394-3 3.037-4 5.432-5
EC .61 1.6 .05 -2.2 .06 .65 -I0.0

10

10-I

10-2

10-3

10-4

10-B

0.01

~ = 2.0

/~_~W_ = 4.0
H

w[] .... 8.0H
,w~-n = ¯°

7’
Normal range-~ h’~O

/

//o

Groove depth/thickness

Figure 9: Dimensionless compliance as a function of
groove depth to thickness ratio for vertical
grooves as determined by computer for infinite
strips.
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Table 5

(Dimensionless compliance for 45° grooves.
data has not yet been reduced to formulae.)

This

D/H 1.00 O.SO 0.60

Will ~, 2
GS .-- 5.734-1 2.739-1
GS 2.571-0 8.525-1
WII~ - 4
GS 2.403-1 1./2~-1 1.014-1
GC 7.513-1 4.773-1 2.735-1
WH,8

GS 6.916-2 5.650-2 4.0~2-2
GC 1.905-1 1.483-1 1.003-!
WH ̄ 16
GS 1.787-2 1.591-2 1.276-2

6C 4.931-2 4.264-2 3.287-2
W/H = 32
GC 1,206-2 h114-2 g.515-3

WIH - 64
GC 2.930-3 2.S0/-3 2.550-3

O. 4___~.0 O. 20 O, I_~0 O.

1.135-1 2.719-2 5.427-3 1.490-3
2.970-1 6.447-2 1.474-2 3.349-3

5,102-2 1.299-2 3.086-3 7.042-4
h228-1 2.993-2 6.954-3 1,S64-3

2.151-2 5.992-3 1.432-3 3.134-4
S.141-2 1.365-2 3.192-3 6.901-4

8.065-3 2.594-3 6.219-4 1.234-4
1.965-2 5.917-3 1.379-3 2.700-4

6,653-3 2.351-3 5.291-4 8.855-S

2.015-3 8.190-4 1.708-4 2,S21-5

101

10-1

I0-2

10-3

10-4

lO-S
O.O1

0
OA

o
~ -~- =4

O ~=8

~-1~ W
@ ~=32

, ~ ~ ,i i I I~1 I I
0.1 1.0

Groove depth/thickness

I i
10.O

Figure I0: Dimensionless compliance as a function
of groove depth to thickness ratios
for vertical grooves as determined by
computer for circles.

1000

100

Strip case

W
O~ =2

W =4

=8

=16

0,1 1,0

Groove depth/thickness

Figure IIA: Error for strip case in modifying formula
by multiplying by (D/H)2 only.

~1000
Circle case

u.= O -WH =2
~ 100
o~

~=4I
nHW_=8

LU

~ 10 I.
0 0.1 1.0

Groove depth/thickness

Figure liB: Error for circular case in modifying
formula by multiplying by (D/H)2 only.

This fits the data reasonably well as seen by
the errors tabulated as ES and EC for the strip and
circle in Table 4 and in Figure 12 for W/H values
through 16 and can be extended to W/H = 32 by replacing
the L above by 0.147. However, while I believe F1 is
a partial representation of reality, I do not believe
the combination FIXF2 has any deep physical significance.
I am publishing it only for those who may need a reason-
ably accurate representation over the entire range.

However, when we try a less ambitious fitting
scheme covering the normal range of values of D/H and
W/H in use, we suddenly hit pay dirt. Here a surpris-
ingly simple formula appears to cover both vertical
and 45 degree cut grooves for both strips and circles

G = 0.7Z (D/H)!(sin2B(H/H))

for O.I<D/H<0.6 ; 2<W/H<8 ; 450<0<90°
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Figure 13: Flow velocity pattern~ and pressure
distributions for vertical and 45° cut
grooves on circular facets. The mean
pressure in the 45° cut case is based
on a facet area entendlng to the groove
center.

Figure Error for the final fon~ulae as compared
to computer results for the vertically
cut groove cases. Two data points are
omitted from the 0.05 (D/H) values 
-lO.O and -ll.6~.

yielding a fit usually better than 25% for useful
values. The constant was weighted to yield the best
values for the circular 45° cut case as the most
practical case. B is the angle of cut with respect
to the surface (i.e., a vertical cut is 90°). The
factor Z is that from the orifice area/flow volume
interpretation almost certainly.

There are two features even beyond the simplicity
of this equation that ! find rather startling. As we
convert from dimensionless compliance to compliance
we obtain

o

Note that the thickness H has completely disappeared
and W appears only as a linear dimension. The orifice
area is proportional to D/sino dominating the equation.
The interpretation is that the facet in this range acts
as if it is full cut sitting on a layer of pitch and
while some flow takes place below the layer defined
by the groove depth, the variations here have little
effect on the phenolnena.

These effects are clearly seen in Figure 13.
Note the sharp pressure drop near the edge and the
different character of the flow demonstrating the
dominance of the orifice flow impedance. Note that
the pressure is almost exactly a factor of two less
in the 45° cut case indicating a factor of two greater
compliance (I/sin245 ° = 2).

Note also that the range of this simplified
equation is almost exactly coincident with the range
of parameters master opticians choose to work in.
They have selected the entire range where absolute
thickness effects can be neglected and where the
phenomena are sufficiently simple that they can be
intuitively grasped and they seldom exceed those
limits. I have frequently wondered at what seemed
an incredible waste of pitch in the layer below the
groove depth. It has consistently been ~y observation
that mathematical analysis may quantify the opticians
intuition and clearly point out the factors of impor-
tance such as the dominance of the groove depth and
shape in this case; however, if it fails to clearly
and rationally explain the common practice of master
opticians, I am imediately suspicious. There are
300 years of trial and error evolution involved in
this practice.

This mathematical detail has been provided
because of the insight given into the processes
by the form of the equations. Secondly, the
equations can be readily programmed into the hand
and desk calculators that are rapidly becoming impor-
tant shop tools. However, in striving for precision
I want to be careful not to overstate the case. These
data and formulae should be used to seek out process
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optima. I do not want to imply that these optima occur
as sharply peaked functions such that the optician
must know his lap compliance to a few percent to do
good work. Such a belief could lead him to an uneco-
nomically long search for a vanishingly small degree
of perfection. I suspect that the peak is rather
broad, that the acceptable range for a given process
is appreciable; otherwise we would not have been able
to function competatively for so many years. Nor do
I wish to imply that this is the full and exclusive
story on pitch flow. Utimately, this data will be
used to examine lap curvature changes. Individual
facets are not going to be uniformly pressed down in
step increments of flatness. Some facets will be
pressed down at the edges, some at the centers and
others skewed. There will be effects due to pitch
surface property changes, usually hardening, due to
leaching, particle absorption etc. These surface
effects should be small since vertical flow results
from movements below the surface but they serve to
point up the fact that these functions are in the
limit only approximations of reality.

At the same time, I do not want to understate
the economic importance of these studies. They show
almost conclusively that there are between three and
four orders of magnitude of lap compliance in common
use today. Now I am not speaking of the three to
four orders of magnitude spread of the data. That
range was selecte~ to demonstrate the phenomena. I
have seldom seen width to thickness ratios (W/H) 
16 but I have seen plenty at eight and slightly above.
I have seldom seen facets cut all the way through or
even to 80% depth but I see cuts ranging from lO to
60~ depth in common use and toward the end of life I
have seen not a few grooves closed to near 5~. Fro=~
this I conclude that the dimensionless ratio range is
such that dimensionless compliances range slightly
over two orders of magnitude marked on the figures
as the normal range. Note that this is dimensionless
compliance,

G = ~-E
FH

~ GH
Compliance = ~ = p

Lab process behavior is predicted on compliance which
means that this G must be multiplied by lap thickness
which ranges from several millimeters to several centi-
meters, and divided by viscosity of which easily more
than an order of magnitude is in common use. This is
the basis for ~ statement of three to four orders of
magnitude.

Now I do not know the shape of any single process
response curve at this time beyond the fact that for
at least some particular processes at least one and
probably only one optimum exists. However, I have
frequently heard very emphatic declarations by opti-
cians that such and such a lap is definitely not work-
ing optimally and have experienced this myself. It
appears quite possible to be well off optimum and I
have seldom seen any optimal peak extend anywhere near
three to four orders of magnitude.

There are a number of additional points of confu-
sion in my mind with respect to this optimum and these
must be clearly stated, a point that seems almost a

contradiction in terms. First, the concept of an
optimum is meaningless without specifying the function
to be optimized and the variables with respect to which
optimization is being pursued. I believe I have been
clear in stating that the function described has been
rate of change of curvature which I regard as the
dominant function described by the term "control".
On the other hand for some processes, "control" might
mean just the opposite.

Furthermore while we tend to categorize phenomena
into compartments, topics of study etc., nature and
processes are continuous. This topic cannot be pursued
in complete independence of wear function theory.
have recently published a brief article calling atten-
tion to flexible laps for aspheric generation and
polishing, laps which have a maximum of compliance.
How can I speak of such compliant laps being valuable
at one time and some much less compliant laps being
too soft at another? A brief answer is that wear
patterns can at times be primarily dependent on pres-
sure variations across a single pad and at another
primarily dependent on dwell time in a certain zone
at relatively uniform pressure.

Thus lap compliance is a function of the process,
of more importance in soBe than in others. It will
take prolonged intensive study to properly sort these
out, and this study hinges critically on the pitch
slurry interactions to be described in the next section.
I can and have written computer programs that examine
wear in terms of both elasticity and viscous flow
compliance but they aren=t worth the paper they are
printed on because they do not properly model the
pitch-slurry-glass interface to be treated. These
considerations are important to the optician in that
they tell him confusion exists. He should not screw
up working processes trying large step improvements
based on what is at this time only a partial picture.

I cannot at this time describe the best use of
this data, (i,e., tell an optician the best way to
make a lap for a particular operation). However even
beyond providing an understanding of the process, I
would recomnend the following. Have someone program
one of the magnetic cards for one of the small program-
mable calculators. Keep track of pitch viscosity with
the ball test to be described and a notebook of lap
parameters used for different jobs with a notation on
the lap performance, good, bad etc. Periodically
reducing this data, the optician should find he has a
key to identify the range of parameters that best
suit his particular practice, Once he knows this he
should be in a better position to tailor his laps to
his own need.

Appendix B contains some further speculation on
this subject.

PITCH-POLISHING COMPOUND

Very little definiti
area, although much very

INTERACTIONS

ve work has been done in this
competent effort has been

expended. The reason is that the process is so complex
that frequently each new bit of information requires a
complete rework of previous data since new factors
formerly unanticipated are brought in by new observation
or speculation.

Prior to beginning a new round of speculation, I
will provide a few calculations of the "back of the



-13-

envelope" variety in an attempt to limit its range.
These are designed to answer the questions of elastic
effects and transient penetration of particles into
a pitch lap prior to further discussions.

First let us examine the question of elasticity.
Assuming a Young’s modulus of ~ x lO9 Newton’s/m2 or
3 x lOI° dynes/cm~, consider the deflection of a l.ap.
We will consider two cases briefly, one fr=~ a single
planetary lap and one a typical spindle operation.

For the single planetary case assume a 2 cm thick
piece of 2.5 density glass on a 2 cm thick pitch lap.
The pressure P will be the product of density, thick-
ness and gravitational constant. This will equal the
product of Young’s modulus and strain, the latter
being the elastic deflection A divided by the pitch
thickness

EA 2.5x2x2x981 ~ ~
3xlOIoo x I0"6cmP = ptglg = ~pitch ; A =

We can get a feel for this by dividing by the wave-
length of visible llght,5 x lO-Scm

A . I0 "6 , 1
~ ~ Tx5xlO-S 150

For the single spindle case assume I cm of pitch
(p=l.O) plus I cm of aluminum (p=2.7) plus I kg 
arm load. Assume the arm load is distributed over a
four inch diameter pad (lO cm).

P : ,l + 25~x 981 = 16.4 x 981 = ~ x I0 ~-~-~

15xlOs a = I/I00a" ~--~T-~i-~-= 5xlO’~ ;~

Thus the elastic deflection is on the order of
one hundredth wave, negligible in terms of the changes
of curvature encountered.

Note that in s~ing elasticity effects on the
order of a wave are negligible we are only speaking
of figuring. The glass appears to be supported off
the pitch by a monolayer of particles varying in shape
an~ statistical orientation add easily able to more or
less uniformly support the glass in spite of separation
variations of tenths of waves. This is easily possible
since mean particle size ranges from half a micron to
a few microns, a visible wave to a few waves. If glass
were resting right on the pitch or on a layer of par-
ticles exactly the same size in all orientations, with
this kind of elasticity effect the glass would be
contacting only on those areas defined by isobars
surrounding peaks on the glass at a few hundredths of
a wave of thickness away from the peaks and soon these
areas would be sharply defined by fringes breaking
away from hundredth wave smoothness. What we actually
see is continuous polishing over undulations a moderate
fraction of a wave in amplitude with the peaks grad-
ually decreasing due to a combination of effects, the
primary one being an increased probability of finding
a particle in a position to cut where the gap between
pitch and glass is smallest.

At the same time we cannot so easily eliminate
elasticity effects from polishing rate or cosmetic
quality. While the strains are small on the order of
separation of glass and pitch, they are appreciable

in terms of the depth to which a particle is scored
by the abrasive. In Hoya Report HGW-O-3E, Izumitani
has showed that there is a 50% rise in polishing rate
of glasses when rubber and felt elastic shear moduli
increase by an order of magnitude and that there is
a pronounced difference in the surface roughness in
Nomarski micrographs, the harder surfaces producing
rougher surfaces. It is easily possible that elas-
ticity effects can influence the bite of the particles
into the glass through such mechanisms as influencing
chatter, minute shocks etc., as well as force parti-
cles through the hydrolized layer into virgin glass.

The acoustic velocity in solids is given by the
square root of the sum of Young’s modulus and 4/3
the shear modulus both divided by the density, yield-
ing a velocity of approximately 2 x IOs cm/second.
Acoustic resonances on the order of IOs cycles per
second could be set up in pitch on the order of a
centimeter thick. Since typical lap velocities are
on the order of one to ten centimeters per second,
chattering could take place on the order of every
particle length of scraping or less. Chicken track
chatter marks of about this frequency are frequently
seen in glass, the periodicity being set by the
rupture strength of the glass and the particle size,
and ten kilocycles is about the frequency of squeal
heard around a lap that is not always dry. There may
be an implication here between lap speed, thickness,
and particle size and smoothness but I can’t see it
clearly. I simply note it so someone else may have
a chance to make something out of it.

Returning to the question of figuring and looking
at viscoelastic effects, we note that most viscoelastic
solutions have a factor of the form (I/E + t/u). Since
viscosities used are in the range of lO9 to lO~° we
see that this typically reduces to

(.3 x lO"z° .F ".3 x lO’~t)

showing that the elastic portion of the solution is
usually negligible after a few tenths of seconds.

Looking now at the penetration of slurry particles
into pitch we find Lee and Radok’s 1956 solution (Ref.
7).

F
After Preston (1922)

Lee and Radok (1956)

x(t) = deviatoric stress
ignored here

This solution is similar to an elastic solution
by Timoshenko and Goodier (Ref. 8)

r (t) = where G = 2-T~-~T= shear modulus.

Making the approximation that R>>h so 2(R-h) ~ D,
h = R-d, and d2 = R2-r2 we can manipulate to obtain
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a result ve~ similar to Preston’s empiracally derived
expression of 1922 (Ref. 3) if the elastic term 
dropped.

u = const Ft
h~

Cerium oxide polishing compounds range from I/2
to 3 microns with a density of 7.132 theoretical.
Assume the ultrafine half micron size and a I0% ~
weight fraction (a distinct optimum as shown by
Sergeev Ref. 6, pg. 82). Assuming v is the volume
fraction we can proceed to calculate the rate of
pitch penetration by a free particle passing be~een
pitch and glass as follows:

7.132v
wt fraction = ~~~_v--~ -= .l ; v = 0.01534

Assuming unifom size spherical partic]es the
average volume per particle is 6.545 x lO-I~ cms at
~alf micron size. Assuming the space between glass
and pitch is the particle size (a result we will find),
the volume becomes half a micron per square centimeter
of interface yielding with the above 7.67 x lO-? cubic
centimeters of ceria and 1.172 x lO? particles per
square centimeter. Assuming a planeta~ lap with pitch
viscosi~ 2 x lOz° poise and a glass 2 cm thick of
densi~ 2.5, we find 4.18 x lO-~ ~nes per particle
load and substituting we obtain

h(t) = 4.97 x lO’2~x 10"zo +½x lO’ZO 

yielding 1.9 x 10-12 cmin O.l sec and 4.12 x lO"~

cm in one second.

This result is important because it completely
dispels the possibili~ that edge roll-off is due to
particles rapidly sinking on the order of a micron
(the magnitude of edge round off) into pitch in the
first centimeter or so that they travel between pitch
and slur~, a point we shall return to in further
discussions of edge round off.

An interesting side result is the following: We
have Just shown that glass and pitch are probably
separated ~ the diameter of the slur~ particle D,
so the interface volume is probably D cm~ per square
centimeter of interface area. Thus for a given con-
centration of slur~ the number of particles is
inversely proportional to D~ since

Thus the force per unit particle is proportional to
D2. Replacing F in the Lee and Radok fomula we obtain

h(t)pit~.h= const( D2t~2/3 = const(_.¢/2/3 ¯
V J/

Thus for a given time and pitch viscosity h(t)/D 
a constant. This says that the fraction of its dia-
meter that a particle sinks into a pitch in a given

time is independent of size. Furthermore the fraction
of its diameter that it penetrates into the glass due
to elastic effects will also remain the same as can
be seen simply by replacing the t/, term in the Lee
and Radok formula by I/E.

const X/-1 D 2~2/3
/1\2/3

" h(t)gla= = ~E~’--~ / = const~) 

Thus for a given concentration, time, and pitch we
have the following:

Glass ~ ~ h glass

Pitch i~tcl~

Figure 14: Particle penetration in pitch per unit
time and into glass should be a fraction
of its diameter independent of its size
for a specified slurry concentration.

The glass and pitch penetration or socketing propor-
tions should be the same independent of particle size.
Thus the socketing function relationship to the moment
am~ should remain the same. The width of the scraping
scratch and the depth should be proportional to the
size of the particle. Note that this may be exactly
what Vinokurov found. Columns 2 and 3 (of Table l)
of his data agree with this if we assume that the
larger particles are contributing most of his obser-
vations. Further since the frontal area fraction of
the particle opposing the glass (i.e., i~mersed in the
glass) varies as the square of the particle size, but
the number of particles per unit area of interface
v~ries inversely by the same square, it is quite
possible that volume removal rates are somewhat inde-
pendent of particle size. This is somewhat unclear
in my mind since other effects could influence the
last statement (i.e., absolute penetration rate into
the pitch away from the glass varies as the diameter
etc.), but the effect should be pointed out since it
may be an important clue for further research, and
since it certainly has significant implications for
those seeking ultra s~ooth surfaces.

With these questions out of the way, let us
examine the observations. Preston observed that
polishing rate was proportional to pressure and veloc-
ity. Vinokurov’s observations lead us to believe
that particle size may be important, particularly
maximum particle size.

Izumitani, with a controlled glass supply, found
no correlation between polishing rate and microvickers
hardness of the glass, indicating that polishing is
not a simple glass cutting function. Similarly he
found no correlation between glass softening temperature
and polishing rate tending to eliminate glass flow.
However, when he plotted polishing rate against the
weight loss 6f glasses immersed in .Ol normal nitric
acid and against microvickers hardness of glasses
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leached for 60 minutes In 0.1 normal nitric acid he
found two rather striking linear relationships for
silicate glasses and for borate glasses. He also
showed that this polishing ~ate continues after the
surface becomes smooth, and that polishing rate is
much slower in oil slurries than in water slurries.
This beautiful sequence of experiments demonstrates
almost conclusively that polishing takes place by
abraiding a layer softened by hydrolysis, and further-
more that the rate of pollshing may be dependent on
the rate of formation of the hydrolized layer.

Before proceeding with pitch slurry interactions
I would like to compare two sets of observations on
cerium oxide relating the rate of polishing to the
firing temperature of cerium oxide. In 1945, Davis
and Wayman reported that cerium oxide fired below
1050°C was too soft to polish glass and that fired
above llTO°C was too hard, continuing to polish glass
but leaving a roughly scored and abraided surface.
Repeating this type of test a few years ago, Izumitani
obtained quite different results shown in Figure 20.
Except for the very definite temperature shift, the
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Figures 15, 16, 17, & 18: Results of Izumitani experiments from Ref. I.
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Figure 19: Polishing takes place in a hydrated g]ass
layer.
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Figure 20: Polishlng rate as a function of cerium
oxide firing temperature - ~zumitani
1975 Gordon Lecture.

low temperature results are to be expected as there
would be a hardness below which the ceria would not
be expected to break even the hydrolized layer. The
more significant point is that Isumitani found B
decrease in rate above a firing temperature of 900°C.
He was quite, puzzled by this and speculated that the
particles might be more brittle, breaking down more
easily. I suspect both sets of data are correct, and
that the answer lies in the preparation of the material
which can be prepared from a number of sources,
nitrates, phosphates and oxalates, as well as ground
by different processes to different grades of fine-
ness.

My purpose in this digression into chemistry is
to point out that different polishing agent processes
even for the same chemical material may yield differ-
ent results when compounded with pitch variations.
We may not be able to isolate pitch response even from
the polishing compound preparation.

Returning to the main topic, pitch interactions, we
have two striking figures from Izumitani that I have
several times referred to in passing. These are from
Ref. I.

These show the effect of creep compliance at 60
seconds on the polishing rate of soft $F6 glass and
medium BK7 in Figures 23 and 24 respectively. The
abscissa is mislabeled on the figures in the report
but correctly stated as seconds in the text. Since
the term compliance is used, I should explain that
this is not compliance in the sense that we have used
it. Here shear.moduli and shear stress compliance are
referred to, the compliance being the reciprocal of
an effective shear modulus determined after 60 seconds
of creep.

t = ~ Rv AL

:. ~_1__- ~_Z

Thus these are reBll~ ~ type Of viscosity and
we have here experimental verification of the old
opticians adage "soft glass, soft pitch; hard glass,
hard pitch". The optima according to the report fell
at 30 x lO"9 cm2/dyne yielding 2 x IOs poise for
SF6 a soft glass, and at 8 x lO"9 for BK7 yielding
7.5 x 109 poise for BK7.

Dr. Izumitani has sent me viscosity measurements
made on pitches Kl through K7 by himself and Harada
and also by Wada and Hirose. These are

Izumitani & Harada Wada & Hirose

K1 --- 1.4 x I0~2
K2 1 x I0zt 5,2 x I0tt
K3 1 x I0~° 1,6 x I0~
K4 3 x I0~ 4,8 x I0~z
K5 2 x 109 9,9 x 108
K7 1 x 109 ---

The measurements were taken a decade apart which
can easily describe the differences between the two
sets. Izumitani’s more recent data agrees well with
the creep compliance data for K3 through K7 but not
for K2, and the earlier work seems very far off for
Kl. Very slight additions of volatiles would bring
it into line however. Even so when a line is drawn
through the K3 to K7 points (which are consistent) 
very distinct optimum appears on the SF6 curve. The
trend also seems well established on the BK7 curve.
The SF6 curve clearly shows almost a factor of two
rate difference between the K4 and K7 pitch values
and a half width of about half a decade to a decade
at the half width points. For pitch with its expo-
nential temperature variation this is a rather narrow
zone corresponding to between three and four degrees
centigrade; we had generally found this to be two to
four degrees centigrade for planetary lapping rather
heuristically without quantifying the effect as
reported in Ref. 9.

At this point, I am almost certain that for any
glass there is a pitch too hard since the particles
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Figures 21, 22, 23 & 24: Effect of elasticity and viscosity on polishing rate
from Zzumttant, Ref. 1. Note K1 through K7 are pitches.

cannot properly socket themselves. For thts effect a
softer pttch ts requlred for a softer glass, because
the particles tend to dig into. the soft glass more
deeply tendtng to produce a greater shearing force
requiring deeper socketlng.

The drop-off on the softer stde which ts most
clearly pronounced and incontrovertable is tnmy
opinion due to a greater tendency for the particles
to roll in too soft a socket expostng less preferential
cutting edges. However, I must potnt out that a greater
ease of plowing ts quite as good an explanation, and
another posstbtllty is sinking more easily into the
pttch although there are some difficulties with this
last case since other particles should take up the
load and cutting.

At any rate, the important point to note is that
there does appear to be an optimum. These data are
Incomplete on several counts. Both SF6 and BK7 are
of the siltcete family and the two Figures 17 and 18
taken from the same Hoya report tend to show a signif-
icantly different polishing r~te behavior for the borate
family of glasses. In addition, the effect of polish-
tng compound selection on this phenomenon has not been
studied. Work in both these areas is in progress,

Furthermore, the data do not tell us whether we want
to work at the optimum in all cases since we have
hydrolysis Pates and surface smoothness to consider.
However, the economic implications are obvious and
this is certainly something to look for in setting
up production.

Ne have made another set of observations that
bears on the point of pa)ttcle penetration, involving
edge roll-off on continuous flat laps. Since this
can be on the order of microns, it ts obvious that
this is not an elasticity effect or a time dependent
particle sinking into the pitch from calculations
made earlier in this section.

We hypothesized that a large particle entering
beneath the glass could scope deeply for a while,
plowing through the pitch etthe~ continuously or after
heating. Large particles sprinkled on the lap pene-
trated a distance inversely to their diameters, and
reducing the facet size significantly (to decrease
the plowing distance) greatly reduced the yell-off
problem.

A similiar phenomenon bearing on glass pitch
interactions is scratching on planetary laps. It has
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Figure 25: Edge roll-off on flat planetary laps ts
not due to elasttc deflections or to
sinking particles, but to various sized
particles abraidtng the edge for short
distances.

been noted previously (Ref. 9) that shops employing
planetary laps find polished chamfers greatly reduce
the incidence of scratching. In studying scratches,
we always found them associated with an edge breakout
at the apparent orlgln of the scratch. More recently
we have been studying a soft glass that is quite prone
to scratching. Square samples prepared with polished
edges and chamfers on opposite sides, and fine and
coarse ground chamfers on opposite sides typically
show no scratches originating on the polished chamfer
sides, a few on the fine ground side, and. noticeably
more on the ~oarse ground edge. For a long time I
belleved these were due to chips breaking out of the
edge, but I believe evidence is accumulating that
these are due to large particles or clumps jamming
into a socket in the glass and against the pitch,
originating a further breakout and progressing across
to scratch. This mechanism is consistent with the
grinding studies of Saccocio (Ref.lO) who found that
the edge serves as a size discriminating selector.
At first glance thls seems inconsistent with the
above observations on edge round off which seem to
indicate the largest particles should not penetrate
the interface very far. There are several possible
explanations to account for this. First, the edge
breakout indicates the process is initiated with
considerable violence indicating that the scratching

particles could be jamned into the pitch so deeply
that plowing simply cannot take place, Secondly,
if heating of the particles influences plowing, there
may be a size where the heat capacitance is such that
the particle cannot heat Lip sufficiently rapidly to
begin plowing. As noted earlier, the disruption
energy should be proportional to the particle size
squared but its heat capacitance should vary as the
cube, increasing the time to reach a certain temper-
ature by the size of the particle,

Grooves and facet edges are important, and the
more edges the better for fast even cutting. Fluid
turbulence in the grooves, easily visible through
the glass when pitch chips are present continuously
redistributes polishing particles, and facet edges
present them in new orientations to the glass, more
edges increasing the probability of a cut. Pitch
pressed against window screen produces a superior
cut. A fresh cut and rough scraped lap may have a
coefficient of friction (a measure of cutting) 
0.75 to 0.8. After some hours when the pitch has
become smooth, rubbery, dead, this may drop to 0.30
and even to 0.17. For a while until the surface
becomes fully charged with particles, wire brushing
or dragging backsaw blades crossways across the pitch
may restore the lap.

SUMMARY

In this section we have described a number of
pitch slurry interactions that obviously have a
significant effect on polishing rate and cosmetic
quality, The economic importance is obvious, but
even here care must be taken not to overstate the
case. Polishing rate is not the only factor in finish-
ing, Uniformity and control of figuring are of major
importance obviously and so is cosmetic quality. These
may not be consistent with maximum possible polishing
rate,

Work is in progress to investigate these areas
but definitive results may be a long time coming. For
some shops optimization along these lines now is a
factor of importance,

All we can suggest for now for those wishing to
pursue the subject is to polish small samples on a
small ring planetary lap with the same slurry an~
different pitches, Welghing a 50 to lO0 gm sample to
a milligram or a tenth of that is comparatively simple
on a good mlcrobalance from which weight changes cor-
responding to thickness changes on the order of x/lO0
may easily be inferred, permitting a shop to optimize
its own pitch slurry comblnations.
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APPENDIX A

PITCH TESTING

From the foregoing, it is obvious that the primary
property of interest to the optician is pitch viscosity.
This Appendix will address the practical measurement of
this property.

The obvious first source of testing procedures is
the American Society for Testing Materials (ASTM).
They provide two test methods for high viscosity mate-
rials. The best is covered in ASTM publication D-3205-
74, Tentative Method of Test for Viscosity of Asphalt
with Cone and Plate Viscometer. This is used for the
range of lO3 to lOz° poise but requires calibration
using standard oils available only in the range from
lO3 to lOh poise. This is quite a ways from the range
of lO8 to lOIt poise in which we are interested. I
know of at least one large shop that has used this
method, but they claim poor results.

ASTM publication D5-73, Standard Test for Penetra-
tion of Bituminous Materials, covers a needle type test
somewhat similar to the Twyman test, but adequate cor-
relations are not available.

Faced with this situation we developed a form of
Searles cylindrical tester. This consists of a rotat-
ing cylinder placed within a fixed cylihder with pitch
filling the annulus between. The inner cylinder is
held in position with sealed ball bearings and torque
is applied to the inner shaft by weights connected
over a pulley to a drum fastened to the inner shaft.
The entire apparatus is immersed in a temperature
controlled water bath. The unit is not completely
frictionless. A weight hanger was progressively cut
down until zero rotation appeared overnight, with a
final weight of approximately 50 grams, small in compar-
ison to the test loads which ranged from one to five
kilograms.

The formula for determining the viscosity with
such an apparatus can be developed as follows, letting
"a" equal the inner radius, "b" the outer radius, %"
the cylinder length, "T" the applied torque, and "~i"
is the viscosity.

dv T

Ib T Fbdr Tdv = j = -
a a

= =(b-a)

~ = T[l-a/b] / 2~=Aa(b-a)

If all dimensions are in centimeters, force in dynes
(load in grams x gSl) and = the angular velocity 
in radians per second, the units of viscosity will
be in poise (dyne sec/cm2).

This method is probably too complex for normal
shop use, but it is by far the most accurate and
repeatable, and it is highly recommended for any
serious pitch research or for acquiring data for
advanced automated processes.

Penetrometer testing requires a clean fresh
pitch surface. ~e had erratic results until we found
a proper surface handling procedure. We pour our pitch
sample (stirred just prior to pouring) onto a piece 
aluminum foil, shiny side up using a tape dam. The
sample thickness is usually one to two centimeters.
Before the pitch hardens we place a small round of work
glass on the upper surface while the pitch is still soft
enough to make a good bond to the glass. Bubbles rise
away from the foil which serves to protect the surface
from oxidation and perhaps prevent more volatile compo-
nents from diffusing out of the surface. When this
cools sufficiently we place the sample in a water bath
and after it has come to equilibrium we remove the foil
which strips off cleanly with no need for surface
preparation. We then carefully wring the glass onto
the platform under the water and lower the ball onto
the pitch, starting a stopwatch. Depth penetration is
measured with a dial indicator, those we use having a
one inch travel and having half mil divisions with
readings to tenths being easily estimated. A term
easily overlooked in this procedure is the dial indi-
cator load which can be appreciable. These are spring
loaded to insure proper following action. For example,
the indicator I am presently using has a load of 37
grams necessary to begin deflection and an increasing
load of 200 grams per inch of deflection. This is
easily measured by up-ending the indicator and placing
known weights on the indicator arm. We use the average
of the initial and final indicator load added to the
separate weights.

The attention to pitch surface preparation for
this test may lead some to question its validity for
predicting flow characteristics on laps whose surfaces
are not so carefully treated. There is some merit to
this question. However, as we have seen, lap flow
characteristics are determined by pitch flow well be-
neath the surface. In this test, however, we are
testing flow at, or very near the surface and surface
effects can have a very strong effect.

Bubbles

Pitch

Glass

Work

More than 1
ball diameter

Mandrel

large bubbles out

/-Tape

,- Aluminum foil
(shiny side up)

- More than 4 pitch thicknesses ,-

Figure 26: Preparation of pitch samples for
penetrometer testi ng.
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In his 1922 paper, Preston recommended a ball
test for viscosity stating that

_w._t_

h/ha

the form of the equation we have seen several times.
This test is not widely used in this country presum-
ably because penetrations are shallower requiring
more precise readings, and because it is sensitive
to surface preparation. With the dial indicators
now available, I believe it is a more practical test
for small shops than the truncated cone test for most
work.

The form of the equation has been verified by
the Lee and Radok work and we have verified this for
highly greased bails penetrating less than I/4 of the
~-~ll diameter, using balls ranging from a quarter
inch to an inch, for loads ranging from a few hundred
grams to several kilograms and for viscosities rang-
ing from 5 x IOB to 5 x lOI°.

We are tentatively using the following formula.

2.2 x \~(1-1.4hlD/

where h = penetration depth cm
t = time in minutes
w = weight in grams
D = ball diameter in cm
lJ = viscosity poise

The constant is (gSl x 60 x .374) containing the
acceleration of gravity, minutes to seconds conversion,
and a constant just twice that in the Lee and Radok
formula. I do not know the source of the discrepancy.
The (l-l.4h/D) factor is necessary to preserve the
original form of the equation

a3(t) = IT + + x(t

where a is the radius of the indentation. The removal
of this factor is an approximation valid only for h<<D.
I do not know where tile formula falls apart but it
appears to work well for values of h below one quarter
of the diameter.

A similarly tentative equation for the Twyman
penetrometer, a 14 degree cone truncated a.t I/2 mm
is

InlpW~t) = In(lOb) + 0.009037 In3"3(lOh) - 15.75 

for O.lO mm <h, YO mm
for h<O.l mm omit In 3"3 term

ln( / = 2(n(lOh) 
for h<lO mm

The symbols remain tile same except for h which
is here kept in millimeters which opticians have
traditionally used for this test. I have retained
the usage since many shops have accumulated data in
millimeters and many opticians have some feel for
viscosities in terms of millimeter penetrations.

Both tests become more consistent if the penetro-
meters are lightly greased with silicone vacuum grease.
Pitch is sticky at the most awkward times and irregular
and unpredictable adhesion to the metal balls or cone
appears to have an effect.

I am confident of the form of the equations but
not in the constants 2.2, and 0.7 in the ball equation
and the 15.75 and 18.96 in the cone equation. These
stand or fall together. I had believed they were
better than they were till shortly before publication
when some awkward data pricked the balloon. They
appear to agree with the cylinder tester to about 25%,
and of the two the ball tester is considerably more
consistent.

I suspect three problems with the Twyman test.
Both tests are sensitive to initial reading, but it
is more difficult to get a good zero on the Tw~nan
because of the high tip loading on tile initial
penetration. The small area is also sensitive from the
standard of inhomogeneities, and finally the steep slope
is just begging for the pitch to stick. The slope of
the plot of tile Tw~nan penetration on log-log paper
gradually changes from unity to two over the two orders
of magnitude plotted. Thus penetration behavior is the
type for a fla~ plate initially oradually becoming that
of a cone as penetration progresses.

Dispite a preference for the ball test, I find
both tests are valuable. Some of the harder materials
are almost impossible to test with a ball and many of
the softer materials are almost impossible to test
with the cone. I reconmmnd a penetration tester set
up to use both balls of various sizes and the cone tester
simply by screwing on different tips.

The photograph in Figure 28 shows an assemblage
of viscosity testing equipment whose use should be
obvious.

A final note should be made on accuracies to be
expected. Measurements beyond 25 to 30% are quite
difficult with this type of temperature sensitivity.
Furthermore, our processes are not that sensitive or
we could not have worked effectively in the past. The
peak of the sharp dotted curve in Figure 23 showing
the effect of viscosity on polishing SF6 glass is
plotted with a logarithmic abscissa. On the other hand
the distance from the K4 to K7 points on this curve is
only a factor of three, so we cannot be careless. The
implications here are that about three degrees centi-
grade or five degrees fahrenheit mean almost a factor
of two in polishing rate and that is a lot of dollars.
This may seem a fairly large temperature range in shops
priding themselves on their air conditioning, but work
can range from a number of degrees above the room set
points in high speed processes to several degrees below
in slow processes affected by evaporation and humidity.

Note! Here h = mm *SEE note at top of Table 8 Appendix D!
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Figure 27: Comparison of ball and Twyman penetrometer test results.
Note that each curve employs a different set of scales.
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APPENDIX B

CONSIUERAT!ONS ON PITCH LAP COMPLIANCE

This appendix will consider several topics more
speculative than are proper in the body of a technical
report.

Consider first the edge of the lap. The simplest
equation shows that basically flow varies as the cube
of thickness. In a controlled flow proc{.ss we would
have the center of the lap flowinq as described. At
the edges, however, we have a larger unsupported tl~ick-
ness and consequently much more rapid flow. There will
be a tendency for the pitch to become thinner at these
edges or conversely to exert considerably less pressure
in a fitting operation. Now a top optician frequently
designs his backing plate so that at least initially
the pitch is thinner at the edge. One reason given is
that this is an allowance for average pitch flow during
the process, that the optician desires a uniform thick-
ness (i.e., backing tool concentricity to the part) 
the final stages of Figuring. I sL, hmit that one other
reason this works is that flow is rendered more uniform
at the initial stages. Now a man nlight want the pitch
edge thickness to increase or decrease toward tile end
of life. I submit that a clamp of the Aeroseal type
might be raised or lower(;d on a lap to achieve this.

Next consider the case of a tool working a piece
of glass from flat to a slight convexity, using an
overedge stroke. For simplicity assume both tool and
glass are the some diameter. As the center loaded tool
passes over the edge a non uniform pressure distribution
results across the interface (Figure 28) producing
greater pressure averaged over the center of the tool
and over the edge of tile workpiece than in other areas.
Since only truly spherical shapes can mate at all
contact points, a spherical surface will result, the
workpiece going convex. For small departures from
the plane, this can be approximated as a parabola.
This is actually the case for any small change in
sphericity where tile radius change is small, the cases
the optician would work in this fashion, the cylinder
described below being a thin spherical layer in this
case. This parabolic sag can be defined by a hypothet-
ical cylinder passing through the edges and peak. The
volume enclosed by the sag surface is exactly half the
cylinder volume. Thus the volume removed from the tool
and that from the workpiece in this case by non uniform
pressures must be identical. There will also he a
uniform wear term on each surface due to the m~iform
pressure component.

Now either tile ~ool or the workpiece can have a
compliance greater than the other. We certainly do
not wish the tool compliance to be less than the glass
compliance or the tool would retard the curvature
change we presumably wish to make. I maintain that
equal compliance is the optimal case. It may be argued
that since we are restricted to the glass compliance
induced rates of curvature change, a more compliant
tool is satisfactory. This may be true for a while,
but certainly there will come a degree of tool compli-
ance (i.e., jelly) where the tool cannot, locally pro-
duce or support pressure differences sufficient to
effect the change. Furthermore, to obtain a maximum
degree of regularity, we usually prefer as stiff a lap
or as low a compliance in the pitch pad as is consistent
with the process. This occurs in this case when compli-
ances are equal.

H(r) = Ho(1 - (r/R)2)

(Ho/R~)2~r ~n (R~. _ r~)rdr

rdr

: 11o/2

.’. Vol A = Vol B

Figure 28: Result of a convexing stroke.

To make use of this relationship, we must be able
to compute the glass compliance values. These are not
available as tables since wear rates as mentioned at
length are functions of glass, slurry, and pitch to a
degree just now becoming clear. However, any shop can
determine the glass wear rates and should certainly do
so for its most common material combinations. The
method for doing so ’is described at the end of the
main section on pitch slurry interactions. When this
is done. The shop will have an equation in the form
of the Preston wear equation

~ = c P~

where ~ = rate of thickness removal
P : pressure
V’= mean velocity

o C = process constant
H/P = glass compliance

Then

~ = C~
P

The problem is to determine ~, the mean velocity
on the lap. This has been done to 10% accuracy by
Sergeev and Golovanova (Ref. 6, pg. lO0) 

~ = 2~;nLl.. = Z when i = I
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when i > 1

when i <

and i = nL/nK

where nL : number of lap revolutions per unit time

nK = number of crank revolutions per unit time
L : half the length of the center symmetrical

stroke,

For planetary laps, i is usually 1 and L is the dis-
tance from the lap center to the center of the ring
position.

Now in the case just considered the compliancem
turned out to be the same. This is so only because
the lap and tool areas were identical and further
because exactly equal proportions of each area were
always in contact.

To demonstrate n~ meaning and carry our reason-
ing further, consider the case of a single planetary
lap (Ref. 8). Here the operator is continually va)~-
ing the position of a large glass tool moving it in
and out to effect concave or convex changes to lap
figure. This tool is usually exactly half the lap
diameter. The operator certainly does not want the
lap compliance to be less than the tool compliance
as this would retard the "control" changes he is try-
ing to accomplish. Furthermore, if the lap compliance
is much greater than the minimum required, the outward

nmvement of the flat tool will tend to make the lap try
to go conical for a while rather than convex spherical
as desired. To determine the proper compliance we
shall examine an actual case in planning.

G~ss too~ J /
Pitch j ],,

Lap diam ~ 2 X tool diam
Lap area ~ 4 X tool area
Lap sag ~ 4 X tool sag
Lap dwell ~ 1/4 X tool dwell

7
Lap compliance ~ 64 X tool compliance

~HTool compliance =
P’~T

= V X f(glass, slurry, pitch)

~HLap compliance = = f(#, shape, H, W, D)
P.’~T

Figure 29: Single planetary lap case.

We have a new glass, soft and temperature sensi-
tive in the extreme. First it is soft, so we will
need a new polishing compound, the selection of which

we discussed elsewhere in this report. Having selected
this we must select a pitch viscosity. This will be
a soft pitch and we will head for the optimum on a
curve similar to the one first published by Izumitani.
This curve may be a function both of glass hydrolized
layer hardness and of particle composition and size
so it must be re-established for the combination. We
will head for the peak but this may cut too fast for
the pressure of the glass resting on the pitch leaving
a rough surface by cutting right through the hydrolized
layer. In this case we will back off moving toward
the less viscous pitch side as this yields a better
surface. Having found the viscosity we will select
a temperature as close as possible to the given shop
temperature for our temperature control system to
minimize thernal gradient, transient, and shock effects
for the thermally sensitive glass. Next we will mix
two pitches of the same family to yield the desired
viscosity at this temperature. We will pour that pitch
on the lap to a thickness that will give us as reason-
able a life as we can expect.

Now we must select the lap compliance. We will
have found the glass wear rate for the constant in
Prestons equation from earlier work above

~ = C P~ ; ~/F [] C~

We know the pressure due to the part resting on the
pitch from the part thickness and the velocity from
the machine speed. Here I am speaking of the large
glass tool that forms or controls the large lap
surface Ref. 8. This may or may not have to be faced
with glass of identical type depending on whether the
selected polishing material cuts the basic glass tool
material. As stated elsewhere in this report, facet
size can have an effect on edge roll-off and this glass
has a roll-off problem. With this in mind we will try
to select a minimum facet size (i.e., W/H is now deter-
mined).

Now we must properly select the groove depth to
give us the right compliance. Due to the thermally
sensitive nature of the glass we can expect thermally
induced warping since even the best temperature control
system cannot completely eliminate gradients and a
residual linear gradient will induce spherical warping.
Assume as an example, we are starting with a flat lap,
and find we must make the lap convex to compensate for
warping. Shifting the tool out will make it go con-
cave and the lap go convex. We want as rapid a con-
trol change as we can get, that is we do not want the
lap compliance to be too low to follow the tool figure.
We will forget the central hole in the lap because the
overedge portion of the tool removes about a similar
portion of it from contact and say that the area of
the lap is Just four times the area of the tool which
is exactly half the lap diameter. The sag of the lap
will therefore be four times the sag of the tool for
the same radius of curvature when the lap and tool
are mating. Thus the volume of the cylinder enclosing
the lap sag will be four times four or 16 times that
for the tool after the change is effected. We have
earlier pointed out that the concave and convex portions
of this cylinder volume are equal. Now the tool is
almost always in contact with the lap, but the different
portions of the lap are in contact with the tool only a
quarter of the time, so sixteen times the volume of tool
material removed due to differential pressure must be
removed from the pitch lap by flow in one quarter of
the time exposure to identical pressure differentials.
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APPENDIX C

COMPUTATIONS

The computations for the section on macroscopic
flow approximations are as follows for the strip:

~,P = P (x~) - P (x~)

X1 X2 X 3 ~

h2

Now we can write a second equation for T(x), the
average velocity at x. All the material from the
centerline to x that is being dlsplaced by the plate

moving toward th~ center of thickness must be moving
across x (i.e., n x x x l), flowing through a passage
h thick. Therefore

o
h2 dp= hh_~x

Now here is the little discrepancy we noted earlier.
We are neglecting to describe how each little bit of
material displaced at the plate surfaces flows from
the plate and distributes itself appropriately through
the cross section. This would comp|icate the solution
with a lot of garbage that would be negligible a short
distance away from the entry point in a very thin
strip. Taking up our solution and integrating again
we see

Looking at a little element of width one unit long,
we see that the net force producing a shear across
the area Ax x I, y distant up from the base is given
by the pressure at x, P(x), minus the pressure
P(x+Ax) on the other side acting on the area (h-y) 
This will produce a slight change in velocity going
from one side of the plane at y to the other. We
may write this equation thus

At this point our equation is mathematically exact
for one dimensional flow only. We have however a
two dimensional flow situation, the second dimension
of which we are attempting to minimize. Thus the
student of hydraulics will note a discrepancy between
this and the Navier-Stokes formulation with which he

is familiar. More on this

_ 1 aT
V ¯ v = 0 ; 92 vx p ~x

shortly. Continuing with our equation we may inte-
grate directly

.l_ (h-y)dy = - ~- dx Y-v(y) [] dv 

0 0

The average velocity across location x may be deter-
mined by again integrating from zero to h and dividing
by h

o = _ / X2h3P xdx = + c
3~h ~-

Using the boundary condition P(L) = 0 we obtain
o

3~h(L2-x2)
P(x) = ~

We see that the pressure distribution is an inverted
parabola peaking at the centerline. Of course the
optician is generally not interested in the pressure
distribution but in the mean pressure F so carrying
this one step further

c (L2_x2)dx =

2X-
cL2F = t- = = Pmax

0 0

Therefore

~_- hSF

A quick dimensional check shows

cm _ d_~.ne cm2 cm
~e~ - cms cm~-" dyne sec cm--~T.= ~

For the circular case we can simply replace x with
r obtaining identical results for the first three
steps
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and

h2 .dE~(r) = - 3--~- 

The first change comes ~hen we equate this to the
amount of material flowing past r.

7(r) -- ~-C -- g,~-~h- = ~

yielding

3~,~ (-rdr) and P(r) 3 ph(r~"r2)
dP= 2--~T = 4 ~-~

the same formula as before except for the factor of

two. For the averaging, letting P(r) = c(r~-r2)

I
0

V
3 p r~

0

Noting the analogy between these thin slab formulae
and the heat transfer equations, we can go to a heat
transfer text (Ref.ll) and obtain the solution for
squares and rectangles.

Ao

T=R-\ 

n=O (2n+l) ~cosh 2aJ

Tmax : K \2 - n:O (2n+l>3cosh 2n+l)

The solutions for triangles is harder to come by,
but I am indebted to Dr. William E. Mason for a
most elegant solution for an ~quilateral triangle
of side a.

Ao la~. Y-[(Y-V~F/2)~’3x~]~

yielding

Ao aP. Ao
Tmax - K 36 , and Tavg - K

a2

80

I should at this point explain to those not too
practiced in mathematics that these formulae are not
presented to snow them, nor would I expect most
opticians to wade through them. These formula~ can
be extremely valuable to res(~.archers exploring the
field further on the comp((ter, since they provide
limiting values against which computer progran~s can
be checked. The closed form solution for the equi..
lateral triangle was used by Dr. Nason to check his
triangular mesh size For example, guaranteeing three
digit accuracy in the resu’Its shown on the next page.
These are isotherm plots of temperature for the shapes
of interest from a heat transfer code. The assumptions
were unit rate of heat .(ieneration, unit thermal con-
ductivity, unit dimension in the narrow direction, and
edges held either insulated or at steady state zero
as should be obvious. These pl(~ts of isotherms are
easily transformed into the equivalent isobars from
which flow studies can proceed. The da~a of Table 4
were derived from these, l’he two cases of the equi-
lateral triangle solution having one and two "legs
insulated obviously transform to the diamond and
hexagon respectively.

The next page is a xerox of the actual computer
graphics for selected cases showing some of the pitch
flow phenomena "involved. They sho~.: selected velocity
vectors in cross section and a normalized pressure
plot above. The pressures were backtracked from an
assumption of pure Newtonian flow, uniform lO"G cm/sec
downward velocity on the upper surface with zero
horizontal tractions, and l cm thick pitch of lO~°

poise viscosity fO)’ most c~ses.

The first shows the ~4:1 width to thickness strip
case. The parabolic velocity and pressure profiles
are clearly evident as is the 2/3 mean to peak pres-
sure ratio.

The next shows the same case at 32:1 aspect ratio.
Rere a little burble is evident on the pressure profile
at the edge necessitating reruns with a graded mesh
size evident in all subsequent plots.

The next is a 16:l radius to thickness case show-
ing the 2:1 peak to mean pressure ratio for thin
circular strips quite clearly.

The next two show 8:1 diameter (i.e.,4:l radius
/ thickness) circle cases the first for vertical cut
grooves and the second with 45 degree cut grooves
each to 60?; of thickness.

In the second column we have a 2:1 strip case
with full vertical cut showing how the greater portion
of the strip even with a full cut. The wide discrep-
ancy between this and the thin strip solution should
be obvious.

The next figure sho~vs a 60’.; cut circular
case at 4:1 aspect ratio.

The different character of the peak to inean
pressure in the two 8:1 circular cases is due to
the fact that the mean pressure is calculated
based on an area reaching across to the groove
center. If it were to the groove edge the ~eak
ratio would be near 1.5.
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Table 7

Viscosity Data

VISCOSITY po
.PITCH POISE TEMP aC POISE * K

Gugolz 91 1,29 x I0zl 25.5 1.20 x 10/.2 0.381
5.91 x 101o 28.4
1.03 x 10/.o 32.4
3,46 x 109 35,4
3.42 x 109 35.4
6,11 x 10a 39,4

Gugolz 82 5,15 x 10/.o 24,2 2,27 x 10zz 0,390
Batch A 7,92 x 109 28,6

8,25 x 109 28.6
2.01 x 109 31.8
5,81 x 108 35,0
5.77 x 100 35,0
9.17 x 107 40,3

Batch B 3,48 x 109 30,5
1,96 x 109 32,1
1,91 x 108 38,3
1,89 x 10e 38,31,g5 x 10e 38,3

Gugolz 82
Poorly Handled. 1,55 x 10z:~ 23,0

6.96 x 109 30.5
3.93 x 109 32.1
3,83 x 108 38,3

Gugolz 73 7,05 x 109 22,6 1,73 x 101o 0,3607.58 x 109 22,5
7.41 x 109 22.8
1.84 x 109 26,3
4.55 x 108 29,2
4,95 x 107 35,2
8,30 x 100 42,2

Gugolz 64 5,12 x 108 23,6 1,57 x 109 0,323
2.79 x 10e 25.2
1,10 x 100 28,2
6,20 x 10? 29,8
2,31 x 107 33,2

Gugolz 55 1,02 x 108 25,~ 5,32 x 10e 0.317
5.48 x 107 26.3
3.68 x 107 28.1
1.59 x 107 31.2

Gugolz 73 7.85 x 109 23.6 2.78 x I0z° 0.359+ Gugolz 82
50-50 3,90 x 109 25,4

3.13 x 10e 32.5
3,35 x 107 38.8

Cycad Hard 2.27 x 10/.z 27.0 2. x 10/.~’ 0.311
1,04 x 10z° 30,9

Cycad. 5oft 1,75 x 10s 24,5 5,8 x 109 0,259
3,02 x 100 30,6
5,74 x 107 37,2

*For TO 
[] 20°C

Table 8

Extensive data was taken on the following pitches with
the ball tester. During data reduction however a
number of striking anomalies occurred calling into
question the calibration of the ball tester and tile
correlation used. This had been correlated with the
Gugolz 82 and 73 pitches used in the cylinder tester
using numerous samples poured from the same batches.
In testing these other pitches we find the interchange-
ability of ball sizes and weights remains unaffected
as does the consistency of readings for different
penetrations of the same pitch but on different pitches
the viscosity readings change with depth of penetration
calling into question both the correlation and the
constants. Faced with this situation, I have elected
to publish room temperature readings only taken at the
early stages of penetration so that shops who do no
testing can have an estimate of the viscosities of
pitches they are using. The pitches are all excellent
products and I wish to emphasize that the deficiencies
are in the tester not the pitches. Work will continue,
testing each of these pitches in the cylinder tester
to find the source of the problem and both better data
and correlations will be published later in the Optical
Shop Notebook if data warrants.

Data

VISCOSITY TEMPERATURE
PITCH POISE °C

Cycad *
(Hard.) 9 x lOI° 22.4

Cycad
(Med.) 2.4 x 109 22.2

Cycad
(Soft) 1.6 x lO9 22.3

Universal 4 x 109 22.2
450
600 2.2 x lO]2 22.2
750 1.9 x lO9 22.5

835 2 x IOB 22.2

850 7.7 x I0? 22.2

1366 1.6 x lOz° 22.2

Zobel
Prec A lOzz 22.1

Hard.
Prec C** 1.5 x lO9 22.3

Hed

Prec D** 1.5 x IOs 22.0
Soft

Opt Hard. 1.2 x I0z~ 22.6

Opt Soft 7 x lO9 22.1

*The Hard Cycad pitch tested here is nearly an order
of magnitude lower in viscosity than that measured
in the cylinder tester. That sample was from the
bottom of an old can and significant volatile frac-
tion evaporation may have occurred.

**The Zobel C and Zobel D specimens appeared the same
not only in viscosity but in temperature dependence.
We suggest a shipping goof unusual for the company
which is quite reliable.
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